Indian Statistical Institute Back Paper 2018-2019 Analysis II, B.Math First Year

Time : 3 Hours Date : 10.06.2019 Maximum Marks : 100 Instructor : Jaydeb Sarkar

(i) Answer all questions. (ii) X and Y are metric spaces. (iii) $||x||^2 = \sum_{i=1}^n x_i^2$.

- (1) (10 marks) If $A \subseteq X$ is bounded, then prove that \overline{A} is also bounded.
- (2) (15 marks) Let $f : [0,1] \to \mathbb{R}$ be a continuous function. Prove that f is Riemann integrable on [0,1].
- (3) (15 marks) Prove that the product of two Riemann integrable functions is itself Riemann integrable.
- (4) (15 marks) Let $A = \{x \in \mathbb{R}^n : 2 < \|x\|^2 < 3\}$, and let $f(x) = \cos \frac{1}{\|x\|^2 - 1} \qquad (x \in \mathbb{R}^n, \|x\| \neq 1).$

Prove that f is uniformly continuous in A.

- (5) (15 marks) Let $f(x,y) = \frac{xy}{\sqrt{x^2 + y^2}}$ for all $(x,y) \neq (0,0)$, and f(0,0) = 0. Is f differentiable at (0,0)? Justify your answer.
- (6) (15 marks) True or false (with justification)? "If $f: X \to Y$ is a continuous bijective function, then f^{-1} is also continuous."
- (7) (15 marks) Let U be an open and connected subset of \mathbb{R}^n , and let $f: U \to \mathbb{R}$ be a differentiable function. If

$$(\nabla f)(x) = 0,$$

for all $x \in U$, then prove that f is constant on U.